
This project aims to Super-Resolve Herschel
SPIRE 500 μm maps (fig. 1 show all Herschel
SPIRE bands) towards a PSF FWHM
comparable to that of the JCMT SCUBA-2 450
μm images (fig. 2).

The improved angular resolution affords the
possibility of more reliable multi-wavelength
cross-identifications, improved deblending of
nearby sources and fainter fundamental
confusion limits.

Super-Resolving Herschel SPIRE images 
using Convolutional Neural Networks

Why do we Super-Resolve 
Herschel SPIRE images?

This has allowed JCMT SCUBA-2 to probe
submillimetre number counts below 20 mJy,
where source confusion becomes
problematic in Herschel SPIRE data (table I).

The Herschel SPIRE survey has covered a
much wider sky area than JCMT surveys, on
fig. 3 the sources identified by the JCMT
SCUBA-2 STUDIES survey are overplotted
on the Herschel SPIRE 500 μm cosmos map.
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Table I: Characteristics of Herschel SPIRE and JCMT SCUBA-2 instruments.
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The Network

The Neural Network used in this project is an
Auto-encoder in a U-NET configuration. The
basic schematic of the network is shown
below. The network contains 8 convolutional
layers to reduce the image to a 2x2x512
embedded layer, and 8 de-convolutional
layers.

All layers except the last de-convolutional
layer is followed by Batch Normalisation and
an activation layer (LeakyReLU). The three
first de-convolutional layers is also followed
by a dropout layer.

The final de-convolutional layer is followed by
a Sigmoid activation function. The Sigmoid
activation was chosen to enforce the output
value to range from 0 to 1, preventing the
prediction of negative values suppressing the
noise characteristics of the JCMT SCUBA-2
images.

The input images are 424’’x424’’
cutouts from the Herschel COSMOS data, and
the images are linearly interpolated to a
pixel scale of 1’’ to match the desired
output pixel scales.

The training was done using a combination of
simulated data, and data from the Herschel
SPIRE cosmos maps combined with data from
the JCMT SCUBA-2 STUDIES survey.

Each epoch the network was trained first on
simulated data, and then refined on the
observational data to learn the characteristics
inherent in observational data.
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Results I

The bottom row of fig. 5 shows the
interpolated Herschel SPIRE images used as
input for the network, while the top row
shows the Super-resolved and target JCMT
SCUBA-2 images.

While reconstructed sources can generally be
individually identified in the 250 μm Herschel
SPIRE image, the relative fluxes of the
reconstructed sources appears to closely
correlate with the fluxes at comparable
locations in the 500 μm Herschel SPIRE
image.

Fig. 6 shows the astrometric error between
the target location for sources identified in
the Super-resolved image, and the
reconstructed location.

A strength of this approach is the ability to
generally reconstruct sources insude ~ 10’’ of
the expected location of a JCMT SCUBA-2
450 μm source.

Some sources shows large astrometric errors.
This is likely due to artifacts in the network
output being wrongly identified as possible
sources.

Fig. 7 is a plot of the reconstructed flux in the
super-resolved images plotted against the
flux of the closest identified source in the
target images.

The normal threshold used when calculating
number counts based on Herschel SPIRE
images tends to be > 20 mJy. A strength of
this network is the ability to have good flux
reconstruction down to < 10 mJy, which
allows a significant improvement on what can
normally be expected from Herschel SPIRE
data.
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Results II

A key target of the project was to improve
the angular resolution of the Herschel SPIRE
data and push the PSF FWHM towards that
found in the JCMT SCUBA-2 450 μm images.

Figs. 8 and 9 show the comparison between
the stacked reconstructed PSFs and the
stacked target PSFs of the JCMT SCUBA-2
instrument.

The smoother appearance of the PSF of the
super-resolved data compared to the JCMT
SCUBA-2 data is probably a consequence of
the noise suppression caused by using a
sigmoid activation function in the final layer
of the network.

Figs. 10 and 11 show the purity and
completeness plots of the network for
various source flux densities.

The purity is calculated by the equation
𝑇𝑃

𝑇𝑃 +𝐹𝑃
with TP being the true positives and FP the
false positives.

The completeness is calculated by
𝑇𝑃

𝑇𝑃 +𝐹𝑁
with FN being the false negatives.

The purity of the reconstructed data is
heavily dependent on the reconstructed
source flux density. Similarly, the
completeness is heavily dependent on the
JCMT SCUBA-2 450 μm source flux density.
While purity is generally high and
completeness is > 60% at 10 mJy, the
network excels especially above 15mJy with
completeness above 95%.
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